REMOVE
SEAL
AFTER
WASHING

(31]
¢
¢m
tmo
tmo
tm
o
(3]
(3]
(2]

EEEEEEEEEE

¢
Gy
tmp
tmp
tmp
tmp
tmp
G

tmy

Table of Contents

LiST OF FIGUIES wuvvttiitiiiiiitititttt s 11
O 10N i o o [F T n (o] o FUUN NPT P PP PP PPTT U PPPPPPPPP 1
00 I A o (U1 To J U o [o J PP P PP OPPPPPPPPP 1
1.1.1. Technical SPECIH ICAtIONS ...uuuiieiiiii s 2
1.1.2. GeNneral PiN fUNCHIONS ..ooiiiiiiiiiiiiiiiieeeeee ettt e e e e e eeeeeeeeeeasesesesssseesesssssesssssssassssnrnnes 3
1.1.3. Y oJool 1 o1 T 181 Lot a o] o [P PPPPPPPRt 4
1.1.4. Pullup & PUlldown in ArduUinoccoeeeieiiecccece 5

P 1= 0 TSP ST P PP PPPPPPOPTIN 6
3. RESISTOIS oottt 7
3.1, POtENTIOMETEI...uiiiiiiiiiii 8
30 1 5 1 S PSPPSR PP PP PP PPPPPPI 9

4. EXercise 1: BliNKING @ LEDcovvviiiiiiiiiiiiiiieiiieeieeeeeeeeeeeeeseeseessessssssssssesssssssssssssesssssssssssssssssssssssnsnnnnes 10
EXErcise 2: BIINKING fOUI LEDS.......uuuuuuuuiiieieietieieiiit s 13
5. Exercise 3:Fading aLED ..o 15
6. Exercise 4: Cross Fading RGB LED Module ... 17
7. Exercise 5: Arduino Knight Rider LED Pattern........cccccooiiiiii 21
8. Exercise 6: Arduino Light Sensor USiNg LDRcooiiiiiiiiiiii 23
9. EXercise 7: LM35 TempPerature SENSOI ...ccuuuiiiiiiieieetiie ettt e ettt e e et s e etai s e e aeaa s e satnssesesaseeaeannseenees 25
9.1. Working Principle & Calculation of Temperature from Thermistorccccceeeeiiiiiiiiiiicceieiennnn, 25
Exercise 8: Obstacle Avoidance SeNSOr With BUZZENccoovuiiiiiiiiiiiiiiee e 28
10. Exercise 9: Generating a Tone using @ PasSiVe BUZZEN.......ccoevvviiiiiiiieiiieiie ettt eeve e e eaan s 31
10.1. Working Principle of Passive BUZZEI...........cocoiiiiiiiiie 31
11. Exercise 10: Arduino Tone Keyboard..........cccooooiiiiiiii i 38
12. Exercise 11: 7 Segment Display........coooiiiiiiiiiii 40
13. Exercise 12: Water LEVEl SENSOKcoi ittt ettt et e e et e e e sbreee e 44
13.1. Working Principle of the Water Level SENSOr ..o 44
14. Exercise 13: DHT11 Temperature & HUMIidity SENSOr........ceiiiiiiiiiiiiiee e 48
14.1. SPECIFICATIONS .. 48
14.2. Working Principle of the DHT11 SENSOFccceiiiiiiiiieeeeeeeeeeeeee 49
15. Exercise 14: VU Meter using Sound Detection SENSOrceiiiiiiiiiiiiiiie e e e 52

15.1.
15.2.

16.
18.

Working Principle of Sound Detection SENSOIuuviiiiiiiiiiiiiiiieieieiereereereerererereereeerrreeer. 52
(T ol oY o) 17 ={0] = u o] VPP PPPPPPPPRS 53
Exercise 15: Arduino with Random LED [Humination............eeeiiieiiiniiiiiiiieeee e 58
RETEIEINCES ...ttt ettt e e e e e s bbbttt e e e s e s b bttt e e e e s e s abbbeeeeeeeeeaaanrreaeas 61

I|Page

List of Figures

Figure 1: Arduino UNO DOAIG......uuuuuueeiiiiiiiiiiiiiii s 1
Figure 2: Arduino Uno Pin CoNfiIgUIratioNuuuuueueeii s 3
Figure 3: PUUP & PUIIAOWN RESISLONSuuueiiiiiiiiiiii s 5
FIgUIE 4: Parts O @ LED ..uuuuueeiiiiiiiiiiiiiiii s 6
Figure 5: RESIiSTOr COlOUI COUB ..uuuuuuuiiiiuiiiiii s 8
P =l SR AN oo (=T n o] 4 1] (=] OO PPPPPPPPRN 8
FIBUIE 72 LDR ettt ettt ettt e ettt e e sttt e st e e s st e e s s s e et e s e abr et e e snree e e e reeeeennreeeenans 9
Figure 8: Digital Pins Of ArdUiNO UNO........uuuuuueiiii s 10
Figure 9: Wiring Diagram fOr EXEICISE L......uuuuuuuuuuuuiiiiiiiie s 12
Figure 10: Wiring Diagram fOr EXEITISE 2......uuuuuuuuuuuuuuuuiiiuuiiee s 13
Figure 11: Wiring Diagram fOr EXEICISE 3......uuuuuuuuuuiuiiuiie s 16
Figure 12: Wiring Diagram fOr EXEICISE 4uuuuuuuuuuuuiuuuiiiee s 17
Figure 13: Wiring Diagram fOr EXEICISE 5.....uuuuuuuuuuiiiiiiii s 21
Figure 14: Wiring Diagram fOr EXEITISE B......uuuuuuuuuuunununiiiuniiiie s 23
Figure 15: LIM35 TemMPerature SENSOKiiiuiiiiiiiiie ittt e e etiies e e et s e e et s e seasseeaaaeseaessassenesssseennnnneans 25
Figure 16: Inside SChematic Of LIM35uuuuuiiii s 26
Figure 17: The temperature coefficient vs collector current graph.......ccccceeeeeeeieiiiiiiiiiicc e 26
Figure 18: Wiring Diagram fOr EXEITISE 7uuuuuuuuuuuuuuinuiiiiiui s 27
FIgUIE 19: ObStACIE SENSON .. .uuuuutieeiititiiiiitt s nnnnnnnn 28
Figure 20: Wiring Diagram fOr EXEICISE 8.......uuuuuuuuuuuuuuuiuuuiinin s 29
FIGUIE 21: PASSIVE BUZZEK .. ceviiiiiiiiie ettt e et e e et s e et e e e e e e e e eea s e e eaaa s e e eaaaeeeeanaseeaeaanseennnnnaans 31
Figure 22: Wiring Diagram fOr EXEICISE 9.....uuuuuuuuuuuiiiiiii s 32
Figure 23: Wiring Diagram for EXEICiSE 10uuuuuuuuuuuunnuuuiunniie e aaan 38
Figure 24: 7 SEEMENT DiSPlayuuuuuueueuuiiiiiiiiiii e anan 40
U I A T ST o T D 1= = - o o P PPN 40
Figure 26: Wiring Diagram fOr EXEICISE 11......uuuuuuuuuuuuuiiiiueii e nan 41
FIgUIE 27: Water LEVEI SENSON......uuueeiiiiiiii e a e anan 44
Figure 28: Wiring Diagram fOr EXEICISE 12......uuuuuuuuuuuunuinneui e aaan 45
Figure 29: DHT11 SeNSOr MOQUIE.....coeiiiiiei it e e e ettt e e e e e e e ettt re e e e e e eeesesaaaeeeeeeeeesnnnan 48
Figure 30: Connection diagram Of DHT LDuuuuuuuii e aan 49
Figure 31: Data Signal Of DHT LDuuuuuiii e nan 49

file:///C:/Users/user/Downloads/Arduino%20Advance%20Level%20Student%20kit%20Guide%20book%20V2.0.0.docx%23_Toc153553348
file:///C:/Users/user/Downloads/Arduino%20Advance%20Level%20Student%20kit%20Guide%20book%20V2.0.0.docx%23_Toc153553349

Figure 32: Wiring Diagram fOr EXEICISE 13uuuuuuuuuiiiiuuiie s 50

Figure 33: SOUNT DEtECHON SENSON ...uuuiiiiiiiiiii s 52
Figure 34:InSide Of @ CONUENSET MIC....uuuuuiiiiiii s 53
Figure 35: Pin CoNfIGUIAtioN.uuueeiiiieiiii s 53
Figure 36: Wiring Diagram fOr EXEICISE 14uuuuuuuuuuieiie s 55
Figure 37: Wiring Diagram fOr EXEICISE 15uuuuuuiuuiiieiiii s 59

IV|Page

1. Introduction

1.1. Arduino Uno

BTeTTAL Pit
UNO
jmuu,

Bt r_y. BRARADE T geWne:
wiiz Eice

H,

;,.55 "‘-lL SR TTTTT 1T &

cum snu l"‘!mc

SCL SDA 5U GO

%33 3uouoc~o

Figure 1: Arduino UNO board

The Arduino Uno is an open-source microcontroller board based on the Microchip ATmega328P
microcontroller and is developed by Arduino.cc and initially released in 2010. The board is equipped with
sets of digital and analog input/output (I/0) pins that may be interfaced to various expansion boards
(shields) and other circuits. The board has 14 digital 1/0 pins (six capable of PWM output), 6 analog I/O
pins, and is programmable with the Arduino IDE (Integrated Development Environment), via a type B USB
cable. It can be powered by a USB cable or a barrel connector that accepts voltages between 7 and 20
volts, such as a rectangular 9-volt battery. It is similar to the Arduino Nano and Leonardo. The hardware
reference design is distributed under a Creative Commons Attribution Share-Alike 2.5 license and is
available on the Arduino website. Layout and production files for some versions of the hardware are also

available.

1|Page

1.1.1. Technical Specifications

Microcontroller:

o IC: Microchip ATmega328P

o Clock Speed: 16 MHz on Uno board, though IC is capable of 20MHz maximum at 5 Volts.
o Flash Memory: 32 KB, of which 0.5 KB is used by the bootloader.

o SRAM: 2 KB

o EEPROM: 1 KB

o UART peripherals: 1

o 12C peripherals: 1

o SPl peripherals: 1

o Operating Voltage: 5 Volts

Digital I/O Pins: 14

PWM Pins: 6 (Pin#3,5,6,9, 10 and 11)
Analog Input Pins: 6

DC Current per I/0O Pin: 20 mA

DC Current for 3.3V Pin: 50 mA

Length: 68.6 mm

Width: 53.4 mm

Weight: 25 g

ICSP Header: Yes

Power Sources:

o USB connector. USB has a voltage range of 4.75 to 5.25 volts. The official Uno boards have
a USB-B connector, but 3rd party Uno boards may have a mini-USB or micro-USB
connector.

o 5.5mm/2.1mm barrel jack connector. Official Uno boards support 6 to 20 volts, though 7
to 12 volts is recommended. The maximum voltage for 3rd party Uno boards varies

between board manufacturers because various voltage regulators are used, each having

2|Page

a different maximum input rating. Power into this connector is routed through a series
diode before connecting to VIN to protect against accidental reverse voltage situations.

o VIN pin on shield header. It has a similar voltage range to the barrel jack. Since this pin
doesn't have reverse voltage protection, power can be injected or pulled from this pin.
When supplying power into VIN pin, an external series diode is required in case barrel jack

is used. When the board is powered by barrel jack, power can be pulled out of this pin.

USB JACK
TYPE B

A\ Absolute max_per pin 46mA Reset Button

reccomended 28mA

4= Absolute max 200mA
for entire package

0 7-12V Depending m—O
on current drawn

Tis provides o Lagic refenence voltage 21
for shields thot use it. Tt is comected to the 5V hus. =

j Arduino Uno Pinout
Guide

AREF

(19] A5}
Jpca{18] Ad]

© r3 onty

\ Not Connected ————s || | PCINTS SCK V%
&3 onty © (EE——— {PcINT4 | MISO
RESET INT1: 1

The dnput voltage to the Arduins board when
4T 15 ruming from external power

Y E—

PCINT8

PCINTY
PCINT1Q
PCINT11|
PCINT12
PCINT13

| I PCINT23
i i pernr22 TP H_ocan
........... PCINT21H_ PHM |
i 1 H S TIE p—E |
H_INT1 HpcrnTioHTRRIITH oc28 |

b3

2

A

w
LT T T T T
LT T T T T

e

~

>

@

SDA
scL_{ ADCs

GO

) f ! I o
pesH 13} | PCINTS {_sck] Control
(PCTNT14 - ! { 1 | Physical Pin
RESET PCINT14 l—m—(12} {pcINTa | { mIso | pysce
: Pin Function
N Digital Pin
o Analog Related Pin
T T PWM Pin
G Serial Pin
PR3 11 oc2a HpcinTa HTPWH H MOST ®@® Source Tatal 156w

Figure 2: Arduino Uno Pin Configuration

1.1.2. General pin functions

e LED: There is a built-in LED driven by digital pin 13. When the pin is HIGH, the LED is on, when the
pin is LOW, it is off.

e VIN: The input voltage to the Arduino/Genuino board when it uses an external power source (as
opposed to 5 volts from the USB connection or other regulated power source). You can supply

voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.

3|Page

e 5V: This pin outputs a regulated 5V from the regulator on the board. The board can be supplied
with power either from the DC power jack (7 - 20V), the USB connector (5V), or the VIN pin of the
board (7-20V). Supplying voltage via the 5V or 3.3V pins bypasses the regulator and can damage
the board.

e 3V3: A3.3Volt supply generated by the on-board regulator. The maximum current draw is 50 mA.
e GND: Ground pins.

e IOREF: This pin on the Arduino/Genuino board provides the voltage reference with which the
microcontroller operates. A properly configured shield can read the IOREF pin voltage and select
the appropriate power source or enable voltage translators on the outputs to work with the 5V or

3.3V.

e Reset: Typically used to add a reset button to shields that block the one on the board.

1.1.3. Special pin functions
Each of the 14 digital pins and 6 analog pins on the Uno can be used as an input or output, under software
control (using pinMode(), digitalWrite(), and digitalRead() functions). They operate at 5 volts. Each pin can
provide or receive 20 mA as the recommended operating condition and has an internal pull-up resistor
(disconnected by default) of 20-50K ohm. A maximum of 40mA must not be exceeded on any I/O pin to
avoid permanent damage to the microcontroller. The Uno has 6 analog inputs, labeled A0 through A5;
each provides 10 bits of resolution (i.e., 1024 different values). By default, they measure from ground to 5
volts, though it is possible to change the upper end of the range using the AREF pin and the

analogReference() function.
In addition, some pins have specialized functions:

Serial / UART: pins 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are
connected to the corresponding pins of the ATmega8U2 USB-to-TTL serial chip.
e External interrupts: pins 2 and 3. These pins can be configured to trigger an interrupt on a low

value, a rising or falling edge, or a change in value.

e PWM (pulse-width modulation): pins 3, 5, 6, 9, 10, and 11. Can provide 8-bit PWM output with

the analogWrite() function.

4|Page

https://en.wikipedia.org/wiki/UART
https://en.wikipedia.org/wiki/Pulse-width_modulation

e SPI (Serial Peripheral Interface): pins 10 (SS), 11 (MOSI), 12 (MISO), and 13 (SCK). These pins

support SPI communication using the SPI library.

e TWI (two-wire interface) / 12C: pin SDA (A4) and pin SCL (A5). Support TWI communication using

the Wire library.

e AREF (analog reference): Reference voltage for the analog inputs.

1.1.4. Pullup & Pulldown in Arduino

In digital electronics, Os and 1s are used to transmit data, and since you cannot send a number 0 or 1
through a cable, voltage values are used to indicate each of the states. For the HIGH or 1 a value of 5V will
be used, and for LOW or 0 a value of Ov will be used. Of course, nothing is perfect, and the signal is not
going to be exactly at OV or 5V (resistance and noise of the cables for example). To avoid interpretation
errors, the circuits have a noise margin that allows them to interpret the signals as HIGH or LOW even

though the voltage is not exactly OV or 5V.

FLOAT, is when a pin is not in a fixed state and fluctuates (for example a loose cable connected to an

Arduino pin). This can cause the state of our pin to vary between 0 and 1, and end up giving false positives.

Following diagrams will show how pullup & pulldown resistors are connected to a pushbutton, signal

pin, digital input, etc.

Switch with "pull-up” resistor
+3W +5

O
SWITCH
r ({100 chm) Q

M digital INPUT pin
digital INFUT pin %“

Switch with "pull-down” resistor

r{ 10k ohm)

r{ 10k ohm } SWITCH

GMD

Figure 3: Pullup & Pulldown Resistors

5|Page

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/I%C2%B2C

2. LEDs

A light-emitting diode (LED) is a semiconductor device that generates light when current passes through
it. Electrons in the semiconductor recombine with electron holes, producing energy in the form of
photons. The energy required for electrons to pass the band gap of the semiconductor determines the
hue of the light (equivalent to the energy of photons). Multiple semiconductors or a layer of light-emitting

phosphor on the semiconductor device are used to produce white light.

Epoxy lens/case
Wire bond
Reflective cavity

Semiconductor die

ﬁ ':::t" } Leadframe
\ Flat spot

+ J —

Anode [Cathode

(long) (short)

Figure 4: Parts of a LED

Table 1: LED Voltage & Current

Forward Voltage | Forward Current
Colour
Vs Iy
White 3.2-3.8V 20mA — 30mA
Warm White 3.2-3.8V 20mA — 30mA
Blue 3.2-3.8V 20mA — 30mA
Red 1.8-2.2V 20mA — 30mA
Green 3.2-3.8V 20mA —30mA
Yellow 1.8-2.2V 20mA — 30mA
Orange 1.8-2.2V 20mA —30mA
Pink 3.2-3.8V 20mA — 30mA
uv 3.2-3.8V 20mA — 30mA

6|Page

3. Resistors

A resistor is a two-terminal passive electrical component that acts as a circuit element by implementing
electrical resistance. Resistors are used in electronic circuits to, among other things, reduce current flow,
regulate signal levels, split voltages, bias active devices, and terminate transmission lines. High-power
resistors, which may waste hundreds of watts of electrical power as heat, can be utilized in motor
controllers, power distribution systems, or as generator test loads. Resistances of fixed resistors vary only
minimally with temperature, time, or operating voltage. Variable resistors can be used to alter circuit
components (such as a volume control or a lamp dimmer) or as heat, light, humidity, force, or chemical

activity detecting devices.

The electrical function of a resistor is described by its resistance: typical commercial resistors are made
across a range of more than nine orders of magnitude. The nominal value of the resistance is within the

manufacturing tolerance listed on the component.

Ohm’s Law

Ohm's law describes the behavior of an ideal resistor:
V =1IR

Ohm's law says that the voltage (V) across a resistor is proportional to the current (I) running through it,
with the resistance (R) serving as the proportionality constant. For example, if a 300-ohm resistor is

connected across the terminals of a 12-volt battery, a current of 12 / 300 = 0.04 amperes runs through it.

The ohm (symbol: Q) is the Sl unit of electrical resistance was named after Georg Simon Ohm. A volt per
ampere is equal to one ohm. Because resistors are specified and manufactured in a wide range of values,

Figure 4 shows the resistor color code which represents the resistance of a resistor.

7|Page

4-Band-Code

2%, 5%, 10% 560K O 5%
L 10hL Ml LI L |

L nh LI
0.1%, 0.25%, 0.5%, 1% 2370 1%
5-Band-Code

Figure 5: Resistor Colour Code

3.1. Potentiometer

A potentiometer is a three-terminal variable resistor of which the resistance can be adjusted manually.
Two terminals are attached to opposing ends of a resistive element, while the third terminal is connected

to a sliding contact, known as a wiper, that moves over the resistive element.

Figure 6: A Potentiometer

8|Page

3.2.LDR

METAL FILM Q
_ CONTACT ’
|
CADMIUM
SULPHIDE
N TRACK
METAL Fium
CONTACT $
fa) Basie Structure (h) Svinbol
LDR

Figure 7: LDR

An LDR (Light Dependent Resistor), also known as a photoresistor, is constructed with a serpentine or
zigzag pattern of photo-sensitive material. This material's resistance changes in response to the intensity

of light falling on it.

The photoresistor's behavior is directly linked to the amount of light it receives. In darkness or low-light
conditions, the photoresistor exhibits a high resistance, which can reach up to several megaohms (millions
of ohms). In such conditions, with minimal light exposure, the material's structure limits the flow of current

through the photoresistor, resulting in high resistance.

Conversely, when the photoresistor is exposed to light, whether natural or artificial, its resistance
significantly decreases. As the intensity of light increases, the resistance of the photoresistor drops. In
well-lit environments, the resistance of the photoresistor decreases to a few hundred ohms, allowing more

current to flow through it.

This characteristic behavior of the LDR is crucial in various light-sensing applications. It enables the sensor
to detect changes in light levels and provides an analog output that correlates with the ambient light
conditions. The resistance versus illumination characteristic curve showcases the inverse relationship
between the resistance of the LDR and the intensity of light falling on it, demonstrating how the sensor's

resistance changes with varying levels of illumination.

9|Page

4. Exercise 1: Blinking a LED

Getting Started
But first, we need to download and install the Arduino IDE (if you haven’t already). Please download and

install it.

Introducing digital output
Now, we are going to write code to turn on our LED by setting Pin 3 to HIGH (or 5V). Then, we will modify

this code to flash the LED both on and off. To do this, we must introduce digital output.

The Arduino Uno has 14 general-purpose input/output (GPIO) pins that can be used for digital
input/output (I/O)—that is, to read or write digital information (HIGH or LOW)
using digitalRead() and digitalWrite(), respectively. We could have selected any of these pins for this

exercise, but we chose Pin 3.

Digital I/0 Pins

The Arduino Uno has 14 digital input/output (I/0) pins, which can be
used to read or write digital information via the digitalRead
and digitalWrite commands, respectively.

Figure 8: Digital Pins of Arduino Uno

You can control any of these 14 digital I/O pins with three functions:

1. pinMode(int pin, int mode) configures a specified pin as either an INPUT or OUTPUT. In this case,

we want to specify OUTPUT because we want to output a signal to turn on the LED.

2. digitalRead(int pin) reads digital input from the specified pin, either HIGH or LOW. We will

cover digitalRead in our Intro to Input lesson series.

3. digitalWrite(int pin, int value) writes digital output to the specified pin, either HIGH or LOW. We’'ll

be using digitalWrite in this lesson.

10| Page

What do we mean by HIGH and LOW?

An Arduino’s supply voltage is often written as VS, VCC, and VDD in datasheets.

On the Arduino Uno and Leonardo, the supply voltage (VCC) is 5V. So, when a pin as configured as an
output via pinMode(<pin>, OUTPUT), the pin can provide either a HIGH voltage (VCC) or a LOW voltage
(0V). Some microcontrollers operate at 3.3V. In this case, a HIGH state would be 3.3V but a LOW state
would still be OV.

What can we use digital output pins for?

In general, digital output pins on microcontrollers are designed to send control signals and not act
as power supplies. So, while these pins can supply enough current to use LEDs, piezo speakers, or control
servo motors, if you need to control a high-current DC load such as a DC motor, you’ll need to use a

transistor which is an electronically controlled switch.

What’s the maximum amount of current a digital output pin can supply?
The Arduino Uno uses the ATmega328P microcontroller, which can supply an absolute maximum of 0.04A

(40 mA) per digital output pin or about ~4 LEDs in parallel (with 10mA per branch).

According to Section 28.1 in the ATmega328P datasheet, anything beyond these limits “may cause
permanent damage to the chip”. The maximum total current draw across all I/O pins together should not
exceed 200mA. Again, this limit is not a concern for our introductory lessons (unless you deviate

significantly from them).

Importantly, once you configure a digital I/O pin as OUTPUT, do not connect it directly to GND or VCC or
you may damage the microcontroller (typically, just that particular pin will be damaged). So, for example,
if you’ve accidentally connected Pin 3 directly to 5V and write pinMode(3, OUTPUT); digitalWrite(3, LOW);,

a whole bunch of current will “sink” into Pin 3 and potentially damage the pin.

11|Page

Required components for the Exercise 1:

e RedlEDx1

e Male to Male 20cm Jumper Cables x 2
e 220 Ohm Resistor x 1

e Arduino UNO Board

e Arduino Breadboard

e USB2.0Cable Type A/B

220
ohm

S SR - S-S

Arduino”

R
LR
R
C I
CR R I

BreadBoard

Figure 9: Wiring Diagram for Exercise 1

Sample Code

LED_OUTPUT_PIN
setup() {

pinMode (LED_OUTPUT_PIN, OUTPUT);
}

loop() {
digitalWrite(LED_OUTPUT_PIN, HIGH);

delay(1000);
digitalWrite(LED_OUTPUT_PIN, LOW);
delay(1000);

}

12| Page

Exercise 2: Blinking four LEDs

In this exercise we will blink four LEDs one after the other. Use 4 LEDs as your preference.
Required components for the Exercise 2:
e RedLEDx?2
e YellowLEDx 1
e GreenlEDx1
e Male to Male 20cm Jumper Cables x 5
e 220 Ohm Resistors x 5
e Arduino UNO Board
e Arduino Breadboard

e USB 2.0 Cable Type A/B

-------- PERPIPEPRPRAARARARAERER
D)
D)

seeeerven veesrTYITsEIYTIIIIYIIEI RIS S D
R R R R Iy
,...........’.!.............
R R R R
R R R R R R
Deeseseese R R R R
............ slesflenfecreccccnnn
-------- - - - r- ERRRASREERER
S1°S1°S17°S
=l S| S =
e evevssasdfebfetl i veervnneny!
= |
J
J

Figure 10: Wiring Diagram for Exercise 2

Sample Code

13| Page

LED1_OUTPUT_PIN
LED2_OUTPUT_PIN
LED3_OUTPUT_PIN
LED4_OUTPUT_PIN
DELAY_MS = 1000;

setup() {

pinMode (LED1_OUTPUT PIN,
pinMode (LED2_OUTPUT PIN,
pinMode (LED3_OUTPUT_PIN,
pinMode (LED4_OUTPUT PIN,

Loop() {

OUTPUT) ;
OUTPUT) ;
OUTPUT) ;
OUTPUT) ;

digitalWrite(LED1_OUTPUT_PIN,
digitalWrite(LED2_OUTPUT_PIN,
digitalWrite(LED3_OUTPUT_PIN,
digitalWrite(LED4_OUTPUT_PIN,

delay(DELAY_MS);

digitalWrite(LED1_OUTPUT_PIN,
digitalWrite(LED2_OUTPUT_PIN,
digitalWrite(LED3_OUTPUT_PIN,
digitalWrite(LED4_OUTPUT_PIN,

delay(DELAY_MS);

digitalWrite(LED1_OUTPUT_PIN,
digitalWrite(LED2_OUTPUT_PIN,
digitalWrite(LED3_OUTPUT_PIN,
digitalWrite(LED4_OUTPUT_PIN,

delay(DELAY_MS);

digitalWrite(LED1_OUTPUT_PIN,
digitalWrite(LED2_OUTPUT_PIN,
digitalWrite(LED3_OUTPUT_PIN,
digitalWrite(LED4_OUTPUT_PIN,
delay(DELAY_MS);

l4|Page

5. Exercise 3: Fading a LED

In this exercise, we'll look at how to use analogWrite () function to modify the output voltage at finer

gradations.

Required components for the Exercise 3:

e RedLEDx1

2 Male to Male 20cm Jumper Cables x 2
e 220 Ohm Resistor x 1

e Arduino UNO Board

e Arduino Breadboard

e USB 2.0 Cable Type A/B

Pulse-width modulation (PWM)

The Arduino Uno, Leonardo, Nano, Mega, and many more Arduino boards, despite their names, do not
enable true analog output through a digital-to-analog converter (DAC). Instead, they simulate analog
output using a technique known as Pulse-Width Modulation (PWM). This is irrelevant for most

applications, such as changing the brightness of an LED or regulating the speed of a motor.

So, what exactly does the analogWrite function do? The 8-bit value (0-255) determines how long a 5V
signal is supplied to the output pin during one "analog write" period. So, analogWrite(pin>, 127) would
produce a 5V value for half of the period (because 127/255 = 50%) and analogWrite(pin>, 191) would
produce a 5V for 75% of the period (because 191/255 = 75%). The duty cycle is the percentage of time
that the signal is HIGH.

The hardware PWM pins in Arduino Uno are 3,5,6,9,10 & 11.

15|Page

220

: ohm
A —Iﬂ‘L——p'—F——-—-— L B L B
- <Eﬁi§2 T
— R‘- Ardu‘"" L I B B B L B
BreadBoard

Figure 11: Wiring Diagram for Exercise 3

Sample Code

LED_OUTPUT_PIN
DELAY_MS = 5;
MAX_ANALOG_OUT

setup() {

pinMode (LED_OUTPUT_PIN, OUTPUT);
}

Loop() {

for (i = @; i <= MAX_ANALOG OUT; i += 1) {
analogWrite(LED_OUTPUT PIN, i);
delay(DELAY_MS);

}

for (i = MAX_ANALOG OUT; i >= @; i -= 1) {
analogWrite(LED_OUTPUT PIN, i);
delay (DELAY_MS);

}

}

16 |Page

6. Exercise 4: Cross Fading RGB LED Module

The crossfade approach in this exercise works by increasing one LED color value (from 0 to 255) while
reducing another (from 255 to 0). For example, the code begins by reducing the value of the red LED while
raising the value of the green LED. When the red LED value approaches zero, we start decrementing
another LED (in this example, green). Similarly, when the green LED value hits 255, we start incrementing

another LED (in this example, the blue LED), and so on.
Required components for the Exercise 4:

e RGB LED Module

e Male to Male 20cm Jumper Cable x 4
e Arduino UNO Board

e Arduino Breadboard

e USB 2.0 Cable Type A/B

Figure 12: Wiring Diagram for Exercise 4

17| Page

Sample Code

boolean COMMON_ANODE false;

RGB_RED_PIN =
RGB_GREEN_PIN
RGB_BLUE_PIN

DELAY_MS = 20;
MAX_COLOR_VALUE = 255;

RGB{
RED,
GREEN,
BLUE,
NUM_COLORS

};

_rgbLedValues[] = {255, 9, 0};
RGB _curFadingUpColor = GREEN;
RGB _curFadingDownColor = RED;

FADE_STEP = 5;

setup() {

pinMode (RGB_RED_PIN, OUTPUT);
pinMode (RGB_GREEN_PIN, OUTPUT);
pinMode (RGB_BLUE_PIN, OUTPUT);

Serial.begin(9600);
Serial.println("Red, Green, Blue");

setColor(_rgblLedValues[RED], rgblLedValues[GREEN], rgblLedValues[BLUE]);
delay (DELAY_MS);

}

Loop() {

_rgblLedValues[_curFadingUpColor] += FADE_STEP;
_rgblLedValues[_curFadingDownColor] -= FADE_STEP;

if(_rgblLedValues[_curFadingUpColor] > MAX_COLOR_VALUE){
_rgblLedValues[_curFadingUpColor] = MAX_COLOR_VALUE;
_curFadingUpColor = (RGB) (()_curFadingUpColor + 1);

if(_curFadingUpColor > ()BLUE){
_curFadingUpColor = RED;
}
}

if(_rgblLedValues[_curFadingDownColor] < 0){
_rgblLedValues[_curFadingDownColor] = 9;
_curFadingDownColor = (RGB)(()_curFadingDownColor + 1);

if(_curFadingDownColor > ()BLUE){
_curFadingDownColor = RED;

}
}

setColor(_rgblLedValues[RED], rgblLedValues[GREEN], rgblLedValues[BLUE]);
delay(DELAY_MS);

setColor(red,

{

Serial.print(red);
Serial.print(", ");
Serial.print(green);

Serial.print(", ");
Serial.println(blue);

if(COMMON_ANODE == true){
red = MAX_COLOR_VALUE - red;
green = MAX_COLOR_VALUE - green;
blue = MAX _COLOR_VALUE - blue;
}
analogWrite(RGB_RED_PIN, red);
analogWrite(RGB_GREEN_PIN, green);
analogWrite(RGB_BLUE_PIN, blue);

20| Page

7. Exercise 5: Arduino Knight Rider LED Pattern

The Knight Rider LED circuit is a popular circuit that creates a scanning or sweeping effect resembling the

front lights of the KITT car from the TV show Knight Rider. The circuit typically consists of LEDs arranged in

a line or a row and controlled by a microcontroller like an Arduino.

Required components for the Exercise 5:

Red LED x 5

Male to Male 20cm Jumper Cable x 9
220 Ohm Resistor x 5

Arduino UNO Board

Arduino Breadboard

USB 2.0 Cable Type A/B

This code sets up the pins for 5 LEDs and creates a loop that lights them up in sequence from one end to

the other and then back again. Adjust the delay duration to change the speed of the effect. Upload this

code to your Arduino and connect the LEDs to the specified pins.

Figure 13: Wiring Diagram for Exercise 5

Tip: Place resistors and LEDs to use minimum number of jumper wires, above diagram is for
demonstration.

21| Page

Sample Code

numLEDs =
ledPins[] = {2, 3, 4, 5, 6};

setup() {

for (i =0; i < numLEDs; i++)
pinMode(ledPins[i], OUTPUT);
}
}

Lloop() {

for (i =0; i < numLEDs; i++)
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);
}

for (i = numLEDs - 1; i >= 0;
digitalWrite(ledPins[i], HIGH);
delay(100);
digitalWrite(ledPins[i], LOW);

}

}

22| Page

8. Exercise 6: Arduino Light Sensor Using LDR

The below code will turn on the LED when it is dark and turn off the LED when it is bright. Upload the code

to your Arduino board and change the lighting condition of your environment and see the output.

Required components for the Exercise 6:
e RedlLEDx1
e |DRx1
e Male to Male 20cm Jumper Cable x 6
e 220 Ohm Resistor x 1
e 100k Resistor x 1
e Arduino UNO Board

e Arduino Breadboard

e USB 2.0 Cable Type A/B

T R A

e EEE L. NN
" =] s NN NN

[] EEEEE NN

L] AN E NN

::::::::E:i::

HT :f:f: -

200

Resistor

Figure 14: Wiring Diagram for Exercise 6

100k
Resistor

23 |Page

Sample Code

1drPin
ledPin
ldrvalue = ©;

setup() {

pinMode(ledPin, OUTPUT);

loop() {
ldrValue=analogRead(1ldrPin);

if(ldrValue > 20)
digitalWrite(ledPin,HIGH);
else
digitalWrite(ledPin, LOW);
delay(100);

24| Page

9. Exercise 7: LM35 Temperature Sensor

The LM35 sensor is moderately precise and its robust construction makes it suitable for various
environmental conditions. Additionally, you don't need any external component to calibrate this circuit
and it has a typical accuracy of +0.5°C at room temperature and +1°C over a full -55°C to +155°C
temperature range. It has an operating voltage of 4V to 30V and consumes 60-uA current while it's in

working state, this also makes it perfect for battery-powered applications.

vCe (GND |

Figure 15: LM35 Temperature Sensor

9.1. Working Principle & Calculation of Temperature from Thermistor

The LM35 temperature sensor uses the basic principle of a diode to measure known temperature value.
As we all know from semiconductor physics, as the temperature increases the voltage across a diode
increases at a known rate. By accurately amplifying the voltage change, we can easily generate a voltage
signal that is directly proportional to the surrounding temperature. The screenshot below shows the

internal schematic of LM35 temperature sensor IC according to the datasheet.

25| Page

Al

1.38 Vprar

Vg

Vour= 10 mV/*C
125R2

R2

Figure 16: Inside schematic of LM35

In practice, this diode that they are using to measure the temperature is not actually a PN Junction diode
but it’s a diode-connected transistor. That is why the relationship between the forward voltage and the

transistor is so linear. The temperature coefficient vs collector current graph below gives you a better

understanding of the process.

=
=

L
.
o

=

Temperature Coefficient (mV/°C)
L]
I\

-2.25

25
0.1 02 03 0507 1 2 3 4587810 20 30 4050 TO 100 200 300 500
Ic Collector Current (mA)

Figure 17: The temperature coefficient vs collector current graph

26 |Page

Required components for the Exercise 7:
e M35 Sensor
e Male to Male 20cm Jumper Cable x 5
e Arduino UNO Board
e Arduino Breadboard

e USB 2.0 Cable Type A/B

HAESE 8T A IR R RIITEIIIIIITIE:>»
= +
29

- o~ @ S CoDEEERO0E0CETERAROBRRE
Papapeaueee—m— @400 - --®_:c:c:crrRRRAsRRRRRR

TX -
sxmm ARDUINO

Figure 18: Wiring Diagram for Exercise 7

Sample Code

sensorPin

setup() {
Serial.begin(9600);

loop() {
sensorValue = analogRead(sensorPin);

voltage = (sensorValue / 1023.0) * 5.0;

temperatureC = (voltage - ©0.5) * 100.0;

Serial.print("Voltage: ");
Serial.print(voltage);
Serial.print("V, Temperature: ");
Serial.print(temperatureC);
Serial.println("°C");
delay(1000);

27 | Page

Exercise 8: Obstacle Avoidance Sensor with Buzzer

Distance Adjust
IR Power LED
Receiver
/ Vce
44— Gnd
V\
& Out
IR Emitter Obstacle LED
LED

Figure 19: Obstacle Sensor
The IR LED emits infrared light, which bounces off objects and gets reflected. The IR receiver (photo diode)

detects the reflected infrared light waves. The current flow through the photo diode varies based on the

intensity of the received IR light.

The LM393 comparator IC compares the voltage from the variable resistor (used for adjusting detection

distance) and the voltage from the IR receiver diode.

If an obstacle is detected within the adjustable detection range, the voltage levels change, and the output
LED on the IR sensor module turns on, indicating the detection of an obstacle. Conversely, if no obstacle is

within the detection range, the output LED remains off, signaling the absence of an obstacle.
Modes of Operation:

Digital Output Sensor: In this mode, the IR sensor module provides a simple on/off signal (high/low)

through the output LED, indicating the presence or absence of an obstacle.

Analog Output Sensor: By adjusting the Arduino wiring and code, the sensor's analog signals can be

interpreted to provide distance or proximity information in a more continuous and graded manner.
Usage with Arduino:

The IR sensor module can be interfaced with an Arduino board to detect obstacles or measure distances.
Depending on the application, the Arduino can interpret the sensor's output as digital or analog signals to
take specific actions or provide distance-related information in projects like obstacle avoidance robots,

automated door systems, or object detection setups.

28| Page

Required components for the Exercise 8:

e Obstacle Sensor

e Active Buzzer

e Male to Male 20cm Jumper Cable x 5
e Arduino UNO Board

e Arduino Breadboard

e USB 2.0 Cable Type A/B

connect this wire to +ve terminal of buzzer

~awmT MmN £ o @

DIGITAL (P¥n=~)

. ODUNO

gxmm Arduino”

www.vsa.edu.in

L N
. 0
L
L L B I I
L
connect this wire to out-pin of IR sensor
b~ - R - A . LI e o s 00 L
. L L LI L L B

connect this wire to 5V terminal of Arduino

connect this wire to ground of Arduino

Figure 20: Wiring Diagram for Exercise 8

29| Page

Sample Code

setup() {
pinMode (IR_SENSOR_PIN, INPUT);

pinMode (BUZZER_PIN, OUTPUT);
Serial.begin(96090);

}

loop() {
obstacleDetected = digitalRead(IR_SENSOR_PIN);

if (obstacleDetected == HIGH) {

digitalWrite(BUZZER_PIN, HIGH);
delay(500);
digitalWrite(BUZZER_PIN, LOW);

}

delay(100);

}

30| Page

10. Exercise 9: Generating a Tone using a Passive Buzzer

Figure 21: Passive Buzzer

10.1. Working Principle of Passive Buzzer

There are two types of buzzers, active buzzers, and passive buzzers. Most of the active buzzer works at a
voltage range of 3.3V — 5V and generate only one sound frequency. It can only generate a sound of fixed

frequency when you provide the required voltage to it.

On the other hand, you have a passive buzzer. Passive buzzers can generate a sound of a wide frequency
range (> 31Hz). It needs a fixed frequency signal to generate a specific tone. This tone can be changed by
changing the input signal frequency. We can use a PWM signal or the tone() function in Arduino to
generate this type of input signal and generate a tone. Thus we can get more control over the buzzer tone

when we use the tone() function.
The basic syntax for the tone function is given below.

e tone(pinNumber, frequency) and

e tone(pinNumber, frequency, duration)

Where pinNumber is the Arduino pin number on which we generate the tone. frequency determines the

frequency of the tone in hertz. and duration determines the duration of the tone in milliseconds.
So if we want to generate 500 Hertz tone for 500ms at pin no 9, we will use tone(9, 500, 500)

A call to the noTone() function will stop the tone. The syntax for the noTone() is noTone(pinNumber) where

pinNumber represents the pin number that the buzzer is attached.

31| Page

Required components for the Exercise 9:
e Passive Buzzer
e Male to Male 20cm Jumper Cable x 2
e Arduino UNO Board
e USB 2.0 Cable Type A/B

Figure 22: Wiring Diagram for Exercise 9

32|Page

Sample Code

NOTE_G4,8, NOTE_C4,8, NOTE_DS4,16, NOTE_F4,16, NOTE_G4,8, NOTE_C4,8,
NOTE_DS4,16, NOTE_F4,16,

NOTE_G4,8, NOTE_C4,8, NOTE_DS4,16, NOTE_F4,16, NOTE_G4,8, NOTE_C4,8,
NOTE_DS4,16, NOTE_F4,16,

NOTE_G4,8, NOTE_C4,8, NOTE_E4,16, NOTE_F4,16, NOTE_G4,8, NOTE_C4,8, NOTE_E4,16,
NOTE_F4,16,

NOTE_G4,8, NOTE_C4,8, NOTE_E4,16, NOTE_F4,16, NOTE_G4,8, NOTE_C4,8, NOTE_E4,16,
NOTE_F4,16,

NOTE_G4,-4, NOTE_C4,-4,

NOTE_DS4,16, NOTE_F4,16, NOTE_G4,4, NOTE_C4,4, NOTE_DS4,16, NOTE_F4,16,
NOTE_D4, -1,

NOTE_F4,-4, NOTE_AS3,-4,

NOTE_DS4,16, NOTE_D4,16, NOTE_F4,4, NOTE_AS3,-4,

NOTE_DS4,16, NOTE_D4,16, NOTE_C4,-1,

NOTE_G4, -4, NOTE_C4,-4,

NOTE_DS4,16, NOTE_F4,16, NOTE_G4,4, NOTE_C4,4, NOTE_DS4,16, NOTE_F4,16,
NOTE_D4, -1,

NOTE_F4,-4, NOTE_AS3,-4,

NOTE_DS4,16, NOTE_D4,16, NOTE_F4,4, NOTE_AS3,-4,

NOTE_DS4,16, NOTE_D4,16, NOTE_C4,-1,

NOTE_G4,-4, NOTE_C4,-4,

NOTE_DS4,16, NOTE_F4,16, NOTE_G4,4, NOTE_C4,4, NOTE_DS4,16, NOTE_F4,16,

NOTE_D4, -2,
NOTE_F4,-4, NOTE_AS3,-4,

NOTE_D4,-8, NOTE_DS4,-8, NOTE_D4,-8, NOTE_AS3,-8,
NOTE_C4,-1,

NOTE_C5,-2,

NOTE_AS4, -2,

NOTE_C4,-2,

NOTE_G4, -2,

NOTE_DS4, -2,

NOTE_DS4,-4, NOTE_F4,-4,

NOTE_G4,-1,

NOTE_C5, -2,

NOTE_AS4,-2,

NOTE_C4,-2,

NOTE_G4, -2,

NOTE_DS4, -2,

NOTE_DS4, -4, NOTE_D4,-4,

NOTE_C5,8, NOTE_G4,8, NOTE_GS4,16, NOTE_AS4,16, NOTE_C5,8, NOTE_G4,8,
NOTE_GS4,16, NOTE_AS4,16,

NOTE_C5,8, NOTE_G4,8, NOTE_GS4,16, NOTE_AS4,16, NOTE_C5,8, NOTE_G4,8,
NOTE_GS4,16, NOTE_AS4,16,

REST,4, NOTE_GS5,16, NOTE_AS5,16, NOTE_C6,8, NOTE_G5,8, NOTE_GS5,16,
NOTE_AS5,16,

NOTE_C6,8, NOTE_G5,16, NOTE_GS5,16, NOTE_AS5,16, NOTE_C6,8, NOTE_G5,8,
NOTE_GS5,16, NOTE_AS5,16,
}s

(melody) / (melody[@]) / 2;

wholenote = (60000 * 4) / tempo;

divider = 0, noteDuration

setup() {

for (thisNote = @; thisNote < notes * 2; thisNote = thisNote + 2) {
divider = melody[thisNote + 1];
if (divider > 0) {

noteDuration = (wholenote) / divider;
else if (divider < 9) {

noteDuration = (wholenote) / abs(divider);
noteDuration *= 1.5;

tone(buzzer, melody[thisNote], noteDuration * 0.9);

delay(noteDuration);

noTone(buzzer);

Loop() {

37| Page

11.

Exercise 10: Arduino Tone Keyboard

This exercise involves creating a tone keyboard using six pushbuttons and a passive buzzer with an Arduino.

This setup allows users to generate different tones by pressing the buttons.

To accomplish this, you'd connect each pushbutton to an analog pin (Analog pins also can be used as digital

pins, this is an example for that) on the Arduino and connect the passive buzzer to a digital pin. Then,

when a button is pressed, the corresponding tone will be played through the buzzer.

Required components for the Exercise 10:

Passive Buzzer x 1

100 Ohm Resistor x 1
10k Resistor x 6
Pushbutton x 6
Arduino Breadboard
Arduino UNO Board
USB 2.0 Cable Type A/B

L W
!

vt 1
DIGITAL (PWM -}

Male to Male 20cm Jumper Cable x 10

wmm ARDUINO

we

DRG0P Eotn crvreseaiziresl
= 0. .0 Q 0 KB

.....

Figure 23: Wiring Diagram for Exercise 10

Tip: Place resistors and pushbuttons to use minimum number of jumper wires, above diagram is for

demonstration.

38|Page

Sample Code

pos = 0;
setup()

pinMode(9, OUTPUT);
pinMode(A@, INPUT);
pinMode(Al, INPUT);
pinMode (A2, INPUT);
pinMode (A3, INPUT);
pinMode (A4, INPUT);
pinMode (A5, INPUT);

loop()

if (digitalRead(A®) == HIGH) {
tone(9, 262, 100);
}

if (digitalRead(Al) == HIGH) {
tone(9, 294, 100);
}

if (digitalRead(A2) == HIGH) {
tone(9, 324, 100);
}

if (digitalRead(A3) == HIGH) {
tone(9, 344, 100);
}

if (digitalRead(A4) == HIGH) {
tone(9, 386, 100);
}

if (digitalRead(A5) == HIGH) {
tone(9, 433, 100);

}
delay(10);

12. Exercise 11: 7 Segment Display

Figure 24: 7 Segment Display

There are two main types of 7 Segment LED Displays:

1. Common Anode: In this type of display, a positive voltage source is shared by the display segments.
Segments are lit by setting their individual pins to Ground.
2. Common Cathode: A common path to ground is shared by the segments. Individual segments are

lit when their pin receives sufficient positive voltage.

The idea behind having a common cathode or anode display is that by sharing either positive voltage or a
path to ground, fewer pins are necessary than if every segment had its own pair of cathode and anode
pins. Because most displays also include a decimal point, colon or apostrophe, there are usually eight

segments, seven for the digit and one for punctuation. With one common pin, there should be at least 9

pins.
Common Cathode Common Anode
a f 6nd a D g f VYee a b
1 I ul I 1 [l il ! 1 ml
LI j ! P |
.~ » [A
a N a P’

I3
—
o

1]

Figure 25: Pin Diagram

40| Page

Required components for the Exercise 11:

e Common Cathode 7 Segment Display
e Male to Male 20cm Jumper Cable x 10
e 220 Ohm Resistor x 7

e 10k Resistor x 1

e Pushbuttonx 1

e Arduino Breadboard

e Arduino UNO Board

e USB 2.0 Cable Type A/B

Figure 26: Wiring Diagram for Exercise 11

Tip: Place resistors to use minimum number of jumper wires, above diagram is for demonstration.

41| Page

Sample Code

segA
segB
segC
segD
segE
segF
segG

buttonPin

counter = 0;

buttonState = ;

lastButtonState = ;
lastDebounceTime = 0;

debounceDelay = 50;

digit[10][7
{1, 1, 1, 1,
{e,
{1,
{1,
{e,
{1,
{1,
{1,
{1,
{1,
}s

)

-

-
-
-
-

-
-
-
-

-
-
-
-

-
-

-

-
-
-
-

-
-
-
-

-
-
-
-

-

O R O R OO0 0O R O® KL
-

PP ORRPRRLROOO® R
-

PP RPO®OOR R R R
- -

PP RPRRPRRPRRRPLROR
- -

PP OFR PFRPRORFRFPFRO®
- -

-

-

setup() {

pinMode(segA, OUTPUT);
pinMode(segB, OUTPUT);
pinMode(segC, OUTPUT);
pinMode(segD, OUTPUT);
pinMode(segE, OUTPUT);
pinMode(segF, OUTPUT);
pinMode(segG, OUTPUT);

pinMode(buttonPin, INPUT);

displayDigit(@);
}

Loop() {

reading = digitalRead(buttonPin);

if (reading != lastButtonState) {
lastDebounceTime = millis();

}

if (millis() - lastDebounceTime > debounceDelay) {
if (reading != buttonState) {
buttonState = reading;

if (buttonState == HIGH) {
counter = (counter + 1) % 10;
displayDigit(counter);

lastButtonState = reading;
}

displayDigit(digitToDisplay) {
for (i=2;1<=8; i++) {
digitalWrite(i, digit[digitToDisplay][i - 2]);
}
}

13. Exercise 12: Water Level Sensor

2-5V
, Operating Voltage

svacie Analog Signal

Figure 27: Water Level Sensor

13.1. Working Principle of the Water Level Sensor

The water level sensor operates based on the principle of variable resistance. It consists of a series of
exposed conductors arranged in parallel. This configuration effectively functions as a variable resistor, and

its resistance changes in response to the water level present in the tank or container it is placed in.

The sensor's conductors react to the presence or absence of water. When the sensor is submerged in
water, the conductivity between these conductors improves significantly. This increased conductivity leads
to a decrease in resistance across the sensor. In simpler terms, as more of the sensor is submerged in
water, the electrical path between the conductors becomes more conductive, allowing current to flow

more easily. This results in a lower overall resistance across the sensor.

Conversely, when the sensor is less submerged or not in contact with water, the conductivity decreases,
and the resistance across the sensor increases. This happens because without water, the electrical
connection between the conductors becomes weaker, impeding the flow of current and thereby raising

the overall resistance.

The output from the water level sensor is directly related to this resistance. It generates a voltage signal
thatis proportional to the resistance of the water present. This signal can be interpreted by microcontroller

or other electronics to determine the water level, as higher water levels correspond to lower resistance

44 |Page

and vice versa. This variable voltage signal can then be processed to provide an indication of the water

level in the tank or container being monitored.

Required components for the Exercise 12:

e GreenlEDx1

e RedlLEDx1

e YellowLEDx 1

e Male to Male 20cm Jumper Cable x 7
e 220 Ohm Resistor x 3

e Arduino UNO Board

e Arduino Breadboard

e USB 2.0 Cable Type A/B

T |
crriitiniiin
::l§:::l§'.::l§?:: 2200
’ . | Resistors

Figure 28: Wiring Diagram for Exercise 12

45| Page

Sample Code

lowerThreshold
upperThreshold

redLED = 2;
yellowLED = 3;
greenLED = 4;

setup() {
Serial.begin(96090);

pinMode(sensorPower, OUTPUT);
digitallWrite(sensorPower, LOW);

pinMode(redLED, OUTPUT);
pinMode(yellowLED, OUTPUT);
pinMode(greenLED, OUTPUT);

digitalWrite(redLED, LOW);
digitalWrite(yellowLED, LOW);
digitalWrite(greenLED, LOW);

loop() {
level = readSensor();

if (level == 0) {
Serial.println("Water Level: Empty");
digitalWrite(redLED, LOW);
digitalWrite(yellowLED, LOW);
digitalWrite(greenLED, LOW);

}

else if (level > 0 && level <= lowerThreshold)
Serial.println("Water Level: Low");

digitalWrite(redLED, HIGH);
digitalWrite(yellowLED, LOW);
digitalWrite(greenLED, LOW);

}

else if (level > lowerThreshold && level <= upperThreshold) {
Serial.println("Water Level: Medium");
digitalWrite(redLED, LOW);
digitalWrite(yellowLED, HIGH);
digitalWrite(greenLED, LOW);

}

else if (level > upperThreshold) {
Serial.println("Water Level: High");
digitalWrite(redLED, LOW);

digitalWrite(yellowLED, LOW);
digitalWrite(greenLED, HIGH);

¥
delay(1000);

readSensor() {
digitalWrite(sensorPower, HIGH);
delay(10);

val = analogRead(sensorPin);
digitalWrite(sensorPower, LOW);
return val;

47 |Page

14. Exercise 13: DHT11 Temperature & Humidity Sensor

Figure 29: DHT11 Sensor Module

DHT11 Temperature & Humidity Sensor features a temperature & humidity sensor complex with a
calibrated digital signal output. By using the exclusive digital-signal-acquisition technique and temperature
& humidity sensing technology, it ensures high reliability and excellent long-term stability. This sensor
includes a resistive-type humidity measurement component and an NTC temperature measurement
component and connects to a high performance 8-bit microcontroller, offering excellent quality, fast

response, anti-interference ability and cost-effectiveness.

14.1. Specifications

e Operating Voltage: 3.5V to 5.5V

e Operating current: 0.3mA (measuring) 60uA (standby)
e Qutput: Serial data

e Temperature Range: 0°C to 50°C

o Humidity Range: 20% to 90%

e Resolution: Temperature and Humidity both are 16-bit

e Accuracy: +1°Cand £1%

48 |Page

14.2. Working Principle of the DHT11 Sensor

The DHT11 Sensor is factory calibrated and outputs serial data and hence it is easy to set it up. The

connection diagram for this sensor is shown below.

VDD VDD

§ s« 1Pin

MCU |=—222—=2 | DHT11

4Pin

GND

Figure 30: Connection diagram of DHT11

As you can see the data pin is connected to an I/O pin of the MCU and a 5k pull-up resistor is used. This
data pin outputs the value of both temperature and humidity as serial data. If you are trying to interface

DHT11 with Arduino, then there are ready-made libraries for it which will give you a quick start.

If you are trying to interface it with some other MCU, then the datasheet given below will come in handy.
The output given out by the data pin will be in the order of 8bit humidity integer data + 8bit the Humidity
decimal data +8-bit temperature integer data + 8bit fractional temperature data +8-bit parity bit. To
request the DHT11 module to send these data the 1/O pin must be momentarily made low and then held

high as shown in the timing diagram below.

Releases
the bus
YDD d
Host the start f \ Response i k \1 \ H
\\“W”‘“ ’ \ sgnal / 2‘;"9&“‘*" \ / \ Data *1° bit \ H
D / ___/ \ \ : N/
Single bus Pulled up ta wait for Data "0" bit Down the end of

— Host signal

Slave signal

Figure 31: Data signal of DHT11

49 |Page

The duration of each host signal is explained in the DHT11 datasheet, with neat steps and illustrative timing

diagrams.

Required components for the Exercise 13:

DHT11 Sensor

Yellow LED x 1

Male to Male 20cm Jumper Cable x 3
Arduino UNO Board

Arduino Breadboard

USB 2.0 Cable Type A/B

Now that we understand how a DHT11 Sensor works, we can connect all of the necessary wires to Arduino

and write the code to extract all of the data from the sensor. The circuit schematic for integrating the

DHT11 sensor module with Arduino is shown in the figure below. In this exercise we measure the room

temperature and humidity using DHT11 sensor and display the values in the serial monitor.

~ 8w o> m
LI | 1

DIGITAL (PuM=~)

Arduino”

Figure 32: Wiring Diagram for Exercise 13

50|Page

Sample Code

#include <Adafruit_Sensor.h>
#include <DHT.h>
#include <DHT _U.h>

#define DHTTYPE DHT11
#define DHTPIN 2
DHT Unified dht(DHTPIN, DHTTYPE);
delayMS;
setup() {
Serial.begin(96090);
dht.begin();

sensor;
delayMS = sensor.min_delay / 1000;

event;
dht.temperature().getEvent(&event);

Serial.print(F("Temperature: "));
Serial.print(event.temperature);
Serial.println(F("°C"));
dht.humidity().getEvent(&event);
Serial.print(F("Humidity: "));
Serial.print(event.relative humidity);
Serial.println(F("%"));

delay(delayMs);

51|Page

15. Exercise 14: VU Meter using Sound Detection Sensor

Figure 33: Sound Detection Sensor

The Sound Detection Sensor module consists of a capacitance sensitive microphone (50Hz-10kHz) and an
amplification circuit. This module converts sound waves to electrical signals. It detects the sound with the
help of a microphone and then feeds this sound to processing circuitry which consists of an LM393
operational amplifier. It also consists of a potentiometer which is used for setting the sound level and by
setting this sound level the output of this sound sensor module could be easily controlled. Similarly, the

output of this sensor could be checked by connecting the LED or any other device at output pins.

15.1. Working Principle of Sound Detection Sensor

The working of the sound sensor module is very simple and easy to understand, the main component in
this module is a condenser microphone. The microphone gives out only analog signals when a sound wave
hits the diaphragm of the sensor, this analog signal gets processed by the op-amp and we get the digital

output.

The main component of a sound sensor is a microphone. There are many different types of microphones,
like Carbon Microphone, Fiber Optic Microphone, Ribbon Microphone, and Laser Microphone, but the
sound sensor module we are using has a condenser microphone. An image of the sound sensor module is

shown below,

52| Page

Qutput

Tnal

Sound Waves

Front Plate

(Diaphragm) Back Plate

Figure 34: Inside of a condenser mic

As you can see from the image, a condenser microphone consists of two charged metal plates. The first
plate is called the diaphragm, and the second plate is the backplate of the microphone. These two plates
together form a capacitor. When a sound wave hits the diaphragm of the microphone the diaphragm starts
to vibrate, and the distance between the two plates changes. The movement of the diaphragm and the
change in spacing produces the electrical signal that corresponds to the sound that's picked up by the
microphone and this signal then gets processed by the onboard op-amp. This module also has two built-
in onboard LEDs, one of which lights up when power is applied to the board and the other one lights up

when the incoming audio signal exceeds the threshold value set by the potentiometer.

15.2. Pin Configuration

The Sound sensor module has 4 pins VCC, GND, Digital Out, and Analog Out. We can either use the AO pin
as an output for analog reading or the DO pin as an output for digital readout. The Sound sensor pinout is

as follows:

W Power

& GND

& Analog Output
& Digital Output

Operating Voltage
3.3v/5v

foamacour oo |

GND vcc

_PINOU

Figure 35: Pin Configuration

53| Page

e VCC: Is the power supply pin of the Sound Sensor that can be connected to 3.3V or 5V of the
supply. But note that the analog output will vary depending upon the provided supply voltage.

e GND:Is the ground pin of the Sound Sensor module and it should be connected to the ground pin
of the Arduino.

e DOUT: Is the Digital output pin of the board, low output indicates that no sound is detected by the
sensor, and high indicates that the sensor has detected sound.

e AOUT: Is the Analog output pin of the board that will give us an analog reading directly from the

Sound sensor.

Required components for the Exercise 14:

e Sound Detection Sensor

e RedLEDsx5

e 14 Male to Male 20cm Jumper Cables x 9
e 5220 Ohm Resistors x 5

e Arduino UNO Board

e Arduino Breadboard

e USB 2.0 Cable Type A/B

It is quite simple to connect the Sound Sensor to the microcontroller. As we all know, the sensor produces
an analog signal that is simple to process. We can use the Arduino's ADC to analyze the signal and light up
some LEDs to display the strength of the sound received by the microcontroller. The circuit is also quite
easy; we just connected the Arduino board's VCC and ground to the sensor module, then we used GPI02
through GPI106 to connect the LEDs. The ground is shared by the LEDs and the Sensor. A hardware picture

of the configuration is provided below.

54| Page

L T & 5 5 88 =8 s 8w . e

- - - L] @ & & & @ & 8 @
- - - L L B B B R
- - - L] & & & & & @ & 8 @
- L - - L L B R B L B
- - - L] & & & & & @ & @ @
| 25
¥ * * " O T B R [1 I |)
R [T BT 1T E 1T SR -
EEE |n—”h—ololcl|o| = -
TR E R EETEEEEE EEEEREER] a i
e g * * A EE R E R RN c -
- -
=2
. L . 2
. owow " ' " . » 'R Ic’__
12"
Qi
i oa

L
.Hﬂ-

Figure 36: Wiring Diagram for Exercise 14

Tip: Place resistors and LEDs to use minimum number of jumper wires, above diagram is for
demonstration.

Sample Code

LED 1 2
LED_2 3
LED 3 4
LED 4 5
LED 5 6

sensorPin A@

ledPinilStatus;
ledPin2Status;
ledPin3Status;
ledPin4Status;
ledPin5Status;

setup() {

55| Page

pinMode(LED_1, OUTPUT);
pinMode(LED_2, OUTPUT);
pinMode(LED_3, OUTPUT);
pinMode(LED_4, OUTPUT);
pinMode(LED_5, OUTPUT);
pinMode(sensorPin, INPUT);

Serial.begin(96090);

Lloop() {

sensorValue = analogRead(sensorPin);

Serial.println(sensorValue);
if (sensorValue > 555)
ledPinlStatus = 1;
if (sensorValue > 558)
ledPin2Status = 1;
if (sensorValue > 560)
ledPin3Status 1;
if (sensorValue > 562)
ledPin4Status 1;
if (sensorValue > 564)
ledPin5Status = 1;
if (ledPinlStatus == || ledPin2Status == || ledPin3Status == |
ledPin4Status == 1 || ledPin5Status == 1)

if (sensorValue > 555 || sensorValue
digitalWrite(LED 1, HIGH);

if (sensorValue > 558 || sensorValue
digitalWrite(LED 2, HIGH);

if (sensorValue > 560 || sensorValue
digitalWrite(LED_3, HIGH);

if (sensorValue > 562 || sensorValue
digitalWrite(LED_3, HIGH);

if (sensorValue > 564 || sensorValue
digitalWrite(LED 4, HIGH);

if (sensorValue > 568 || sensorValue
digitalWrite(LED_5, HIGH);

delay(200);

ledPin5Status
ledPin4dStatus
ledPin3Status
ledPin2Status
ledPinlStatus

digitalWrite(LED 1,
digitalWrite(LED 2,
digitalWrite(LED_3,
digitalWrite(LED 4,
digitalWrite(LED_5,

57| Page

16. Exercise 15: Arduino with Random LED Illumination

This code plays the defined melody through the passive buzzer and randomly lights up one LED out of the
5 connected LEDs for each note in the melody. Adjust the melody[] array and noteDurations[] array to

change the melody and the durations of each note.

Required components for the Exercise 15:

e LEDs x 5 (Choose colours as you prefer)
e Male to Male 20cm Jumper Cables x 10
e 220 Ohm Resistors x 5

e Passive Buzzer

e Arduino UNO Board

e Arduino Breadboard

e USB 2.0 Cable Type A/B
Melody and Note Durations:

The melody[] array contains musical notes (like NOTE_C4, NOTE_D4, etc.) that represent the pitches you
want to play. The noteDurations[] array contains the durations of each note in the melody (e.g., 4 for a
quarter note, 2 for a half note, etc.). The for loop in the loop() function iterates through each note in the

melody.
Playing the Melody:

Within each iteration of the loop, the tone() function is used to play a note from the melody[] array through
the passive buzzer. The duration for which the note is played is determined by the corresponding value in

the noteDurations[] array.
llluminating LEDs:

The function illuminateRandomLED() is called after starting each note. illuminateRandomLED() selects a
random LED from the set of 5 LEDs connected and turns it on. It uses the random() function to generate a
random number between 0 and 4 (inclusive) to select an LED pin. The selected LED remains illuminated

for the duration of the note being played.

58| Page

Turning Off LEDs:

After each note is played and the LED has been randomly illuminated, the turnOffLEDs() function is called.
turnOffLEDs() turns off all LEDs by setting their corresponding pins to LOW. By adjusting the melody[] array
and noteDurations[] array, you can change the tune that plays through the buzzer. Each note's duration
determines how long the LED stays lit during that note. The code randomly selects an LED to light up,

creating a random lighting pattern synchronized with the melody being played.

Figure 37: Wiring Diagram for Exercise 15

Tip: Place resistors and LEDs to use minimum number of jumper wires, above diagram is for
demonstration.

Sample Code

50| Page

melody[] = {NOTE_C4, NOTE_D4, NOTE_E4, NOTE_F4, NOTE_G4, NOTE_A4, NOTE_B4,
NOTE_C5};

noteDurations[] = {4, 4, 4, 4, 4, 4, 4, 4};

numLEDs = 5;
ledPins[] = {2, 3, 4, 5, 6};

buzzerPin

setup() {
for (i =0; i< numLEDs; i++) {
pinMode(ledPins[i], OUTPUT);
}

pinMode(buzzerPin, OUTPUT);
}

Loop() {

for (i=09;1i«<8; i++) {
tone(buzzerPin, melody[i]);
illuminateRandomLED();
delay (1000 / noteDurations[i]);
noTone(buzzerPin);
turnOffLEDs();
delay(59);

illuminateRandomLED() {
randomLED = random(@©, numLEDs);
digitalWrite(ledPins[randomLED], HIGH);
}

turnOffLEDs () {
for (i =0; i < numLEDs; i++) {
digitalWrite(ledPins[i], LOW);
}
}

18. References

Arduino. (2023). Retrieved from https://www.arduino.cc

AUTODESK. (2023). Tinkercad. Retrieved from www.tinkercad.com

Circuit Geeks. (2023). Retrieved from https://www.circuitgeeks.com
CodeMagic LTD. (2023). WOKWI. Retrieved from WOKWI: https://wokwi.com

GitHub. (2023). Retrieved from https://github.com

END

Doc Version: 1.0.0

Product Version: 1.0.0

Report issues to: info@optimus.lk

© 2023 Optimus Robotics. All Rights Reserved

6l|Page

